
Toward V&V of Neural Network Based Controllers

Johann Schumann
RIACS / NASA Ames

schumann@email.arc.nasa.gov

Stacy Nelson
Nelson Consulting Company

NelsonConsult@aol.com

ABSTRACT
Online adaptation is a powerful means to handle unexpect-
ed slow or catastrophic changes of the system’s behavior
(e.g., a stuck or broken rudder of an aircraft). Therefore,
adaptation is one way for realizing a self-healing system.
Substantial research and development has been made to use
neural networks (NN) for such tasks (e.g., integrated in vari-
ous unmanned helicopters and test-flown on a modified F-15
aircraft). Despite the advantages of adaptive neural network
based systems, the lack of methods to perform certification,
verification, and validation (V&V) of such systems severely
restricts their applicability.

In this paper, we report on ongoing work to develop V&V
techniques and processes for NN-based safety-critical con-
trol systems, in our case an aircraft flight control system.
Although the project ultimately aims at V&V of online
adaptive systems, this paper focuses on the first part of
this project dealing with so-called pre-trained neural net-
works (PTNN). V&V techniques developed here are impor-
tant pre-requisites for handling the online adaptive case. In
particular, we describe highlights of a process guide which
has been developed within this project and discuss impor-
tant V&V issues which need to be addressed during certifi-
cation.

1. INTRODUCTION
Modern mission profiles and safety-critical applications

(e.g., in civil or military aviation) require that the system
(hardware and software) works reliably and without failures.
It is also desired that the system can cope with unforeseen
catastrophic changes or slow degradation. Such events lead
to different handling characteristics which ultimately can
lead to mission failure or even loss of life.

In this paper, we focus on a specific application, an In-
telligent Flight Control System (IFCS) for an aircraft. The
IFCS is an excellent example of an adaptive system because
the adaptive control system learns about the changes in the
aerodynamics from sensors on or connected to aircraft sur-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOSS ’02, Nov 18–19, 2002, Charleston, SC, USA
Copyright 2002 ACM 1-58113-609-9/02/0011 ...$5.00.

faces (flaps, elevators, rudders, ailerons, etc.) and provides
vital updates to flight control system to compensate in the
case of a failure. The importance of this application be-
comes evident by the fact that during the last 30 years, at
least 10 aircraft have experienced major flight control system
failures claiming more than 1100 lives. Therefore, the Na-
tional Transportation Safety Board (NTSB) recommended
“research and development of backup flight control systems
for newly certified wide-body airplanes that utilize an alter-
nate source of motive power separate from that source used
for the conventional control system”.

Based upon these requirements, a variety of approach-
es for adaptive control (cf., e.g., [16]) has been developed.
There, all changes in the plant dynamics are handled by the
controller with the aim that the original response to control
input is kept (or at least re-gained). A relatively novel, but
very common approach is to use neural networks for adap-
tive control. Here, a variety of different architectures has
been developed [15, 5, 2, 7, 20, 19, 10]. They differ sub-
stantially in the method of control (e.g., direct, inverse [2],
predictive [15, 19]), the neural network architecture (e.g.,
feed-forward networks[15], dynamic cell structures (DCS)
[9, 20], or SigmaPi [10]), as well as implementation details.

In safety-critical applications areas, such controllers have
been successfully flown in unmanned aircraft (e.g., [2]), and
in a modified F-15 aircraft at the NASA Dryden Flight Re-
search Center.

Although these approaches are very promising with re-
spect to their performance and their capability to adapt
and self-heal the system, the question how to ensure the
correct behavior of such a system has not been addressed
in a satisfying way. In general, each piece of software which
is used in a safety-critical application has to go through a
rigorous certification process. Here, the certification author-
ities (e.g., the FAA for civil avionics) need to be convinced
that the system including the software cannot fail. Current
best practices (e.g., as defined in DO-178B [4]) basically rely
on extensive testing—an approach principally not suited for
adaptive systems.

In this paper, we describe preliminary research results
on development of V&V (verification and validation tech-
niques) for a neural network based Intelligent Flight Control
System (IFCS). The IFCS is being constructed as part of the
Intelligent Flight Control Project (IFC), a collaborative ef-
fort among the NASA Dryden Flight Research Center, the
NASA Ames Research Center, the Boeing Phantom Works,
the Institute of Software Research, Inc., and the West Vir-
ginia University. The goal is to develop and demonstrate a

flight control system which can effectively identify aircraft
control characteristics using NNs and utilize this informa-
tion to optimize aircraft performance in nominal and failure
conditions. Within this project, the authors are developing
advanced V&V techniques and processes [12] for the vari-
ous “generations” of IFCSs. In this paper, we will report
on results of the first part of this project, focusing on pre-
trained Neural Networks (PTNN). In such a configuration,
the NN is trained off-line using data from simulations, wind-
tunnel experiments, and test-flights. Then the weights are
frozen, before the actual control system is deployed. Al-
though such a system cannot adapt to unforeseen changes,
it is considered to be an important precursor for design, im-
plementation, and deployment of truly adaptive systems (as
currently being developed within the IFC project).

The rest of the paper is structured as follows: Section 2
introduces the basic architecture of the IFCS. In Section 3,
we discuss the general question of performing V&V on a NN
based system, before we will focus on a proposed V&V pro-
cess for PTNNs (Section 4). In Section 5, we discuss some
numerical V&V issues which are of importance for our ap-
plication. These are based on the (often ignored) fact that
NN algorithms are in essence numerical optimization algo-
rithms. In Section 6, we summarize and sketch out future
research directions.

2. INTELLIGENT FLIGHT CONTROL
The goal of IFCS is to develop and demonstrate a flight

control system that can efficiently identify aircraft stabil-
ity and control characteristics using neural networks and
utilize this information to optimize aircraft performance in
both normal and (simulated) failure conditions. The aircraft
used to test IFCS has been highly modified from a standard
F-15 configuration to include canard control surfaces, thrust
vectoring nozzles, and a digital fly-by-wire flight control sys-
tem.

Figure 1 shows a detailed view of the IFCS as used with-
in the project. Sensor data coming from the aircraft (e.g.,
altitude, airspeed) flow to the Pre-Trained Neural Network
(PTNN), Parameter Identification (PID), and Online Learn-
ing Neural Network (OLNN). The PTNN contains baseline
derivatives computed from wind tunnel data. For the first
part of the project, only this part of the system is used to
control the aircraft. The output of the PTNN is then passed
to the SOFFT (Stochastic Optimal Feed-Forward & Feed-
back Technology) controller, which takes into account the
pilot inputs and provides control commands to the aircraft.
SOFFT is a flight control architecture that is based on an
explicit model-following concept. It uses the neural network
outputs (stability and control derivatives data) to establish
a plant model that controls the aircraft so it can achieve the
desired handling qualities, and to continually optimize the
feedback controller by integrating the neural network data
in a real-time.

For the on-line adaptive configuration, both switches in
Fig. 1 are closed. Thus actual sensor data from the PID are
compared to the baseline derivatives. Deviations indicate
a change of the aircraft’s aerodynamic behavior which the
triggers the adaptation. These derivative errors are used
to train the on-line neural network which actually learns to
correct the data, produced by the PTNN For details on the
architecture see [9].

Figure 1: Overview of the IFCS architecture

3. V&V OF ADAPTIVE NN SYSTEMS
Any attempt toward verification of an (NN-based) adap-

tive system has to address substantially different issues com-
pared to traditional software. One on hand, a NN-based
system is a computer implementation of an analog process
which usually results in an iterative numerical algorithm.
Here, classical, formal verification is almost impossible, and
validation by testing very difficult and time-consuming (but
well understood, cf. e.g., [3, 6]). On the other hand, NN
based adaptive systems pose a much more fundamental prob-
lem with respect to verification: verification usually is de-
fined as the process to make sure that specification and im-
plementation are equivalent. If, however, the adaptive sys-
tem is supposed to adapt toward unforeseen changes in the
system, then, of course there exists no specification of this
event, and thus traditional verification is meaningless.

We therefore propose a different, multi-layered approach
to V&V of NN based systems (Figure 2). A major pre-
requisite to developing high-quality software is to use an
appropriate Software process which covers all stages from
initial requirements to deployment and which is specifically
tailored toward adaptive NN based systems (see Section 4).

Figure 2: Layers of NN V&V methods

For the individual techniques, we identify three layers.
The core-layer contains rigorous, mathematically sound re-
sults concerning robustness, stability, and convergence. Cur-
rent state-of-the-art, however, only can provide relatively
weak results, often in form of asymptotic guarantees. Typi-
cal examples here include Lyapunov proofs of (asymptotic)
stability, or Vapnik-Cherenovis-dimension arguments to rea-

son about the NN’s generalization abilities.
However, for our safety-critical applications, these results

don’t suffice, as, for example, they cannot provide conver-
gence guarantees in the required short period of time (usu-
ally on the order of a few seconds). Thus, methods on the
second layer need to address these issues by intelligent test-
ing. Here, techniques to reduce the number of required test
cases in the nominal and pre-analyzed failure case can be
applied. Analysis of numerical issues, as well as tests for
convergence and robustness of the system belongs to that
layer.

For truly adaptive systems, however, we still don’t have a
guarantee for performance (will there ever exist one?). Here,
the third layer comes into play: methods in this layer will
dynamically monitor the NN and its behavior. Although
it ultimately cannot provide the guarantee, it at least can
return dynamic information on how the NN currently be-
haves and if the current state of the system is recoverable
(healable) at all. Research on these methods are currently
performed [17].

4. A NEURAL NET V&V PROCESS
In order for a neural network to fly on spacecraft or air-

craft, it must be certified. In this context, certification is
the process of obtaining a certificate from NASA and/or the
Federal Aviation Authority (FAA) to indicate conformance
with airborne software standards. One of the major prereq-
uisites for certification is that all activities during the entire
software development and software life cycle are performed
according to a detailed software process. A process guide-
book defines all steps of the process and provides guidance
on the required documents and activities (e.g., which kinds
of tests have to be carried out). In the project, a process
guide for the IFCS is being developed. It is based upon ap-
plicable existing standards and best practices and has been
augmented to specifically deal with the Neural Networks as-
pects of the system. In this paper, we describe the major
elements of the process guide for PTNNs [12]. A process
guide for on-line adaptation is currently in work and closely
follows the line of this guidebook. There are several appli-
cable NASA and industry V&V Standards for IFCS:

• NASA Guidebook for Safety Critical Software, NASA-
GB-1740.13-96 [13]

• Trial-Use Standard for Information Technology Soft-
ware Life Cycle Processes - Software Development, J-
STD-016-1995

• IEEE Standard for Software Test Documentation, IEEE
Std 829-1998 (Revision of IEEE Std 829-1983)

• NASA Procedures and Guidelines (NPG) 2820.DRAFT
and NASA Software Guidelines and Requirements [14].
This document references IEEE/EIA Standards 12207.0,
12207.1, and 12207.2 which in turn reference standards
published in 1995 as ISO/IEC 12207 [8].

• NASA Procedures and Guidelines (NPG) 8730.DRAFT
2, Software Independent Verification and Validation
(IV&V) Management. This standard discusses the re-
quirements for independent verification and validation.

In a nutshell, a manned mission and any mission or
program costing more than $100M will require IV&V1.

In addition to the NASA standards, RTCA DO-178B [4]
contains guidance for determining that software aspects of
airborne systems and equipment comply with airworthiness
certification requirements.

In order to ensure that verification techniques for neural
networks meet these V&V standards, the following guidance
is provided for integrating V&V of PTNN into the Software
Life Cycle.

First, a well-defined process with discrete Software Life
Cycle phases (Figure 3) including documented work prod-
ucts (called deliverables) must be defined for the overall
project. This process must include analysis procedures es-
tablished to ensure correctness of deliverables and scheduled
reviews of major product releases. V&V of neural networks
need to be applied to all phases of this Software Life Cycle
process. They may be used to enhance rather than replace
traditional testing.

Figure 3: Lifecycle

In the following we list phases of the Life Cycle which have
been substantially augmented for V&V of neural networks:

• Systems Requirements, System Architectural Design,
and Software Requirements Analysis: Documentation
for these phases must include the specification for the
NN and its architecture. This description needs to
contain the type of NN (feed-forward, Self Organiz-
ing Map, etc), the learning algorithm (gradient de-
scent, Least Means Squared, Levenberg-Marquardt,
Newton’s method, etc.), and all parameters of the NN
architecture (e.g., number of layers and hidden nodes,
activation functions, initialization). Furthermore, a
concise description of the inputs and outputs (includ-
ing units and the expected and maximal range of val-
ues) and acceptable errors and training set(s) for PTNN

1Report review sent via email from Ken Costello, project
manager, NASA IV&V Facility, dated October 13, 2001.

must be provided. These design and requirements de-
scriptions must be provided in detail, but not neces-
sarily in a formal language. Software models (e.g.,
Simulink) are also acceptable; however all parameters
which might be hidden in the simulator must be made
explicit.

• Software Detailed Design must include a description
of precise code constructs required to implement the
NN, including all data structures and algorithms (e.g.,
libraries for matrix operations).

• Unit Testing must include both black and white box
testing for modularized NN code.

• Software Integration should verify that the NN inter-
faces with other software including proper inputs and
outputs for the NN.

• Software Qualification Testing should ensure that the
requirements are sufficiently detailed to adequately and
accurately describe the NN.

• System Integration Testing should verify that the ar-
chitectural design is detailed enough so, when imple-
mented, the NN can interface with system hardware
and software in various fidelity testbeds.

• System Qualification Testing should verify that the
system requirements are sufficient enough to ensure
that, when implemented, the NN will interface prop-
erly with the system in production.

5. NUMERICAL ASPECTS OF NN V&V
When it comes to actually perform V&V on a NN-based

system, the primary focus of the analysis is laid on the neu-
ral network specific tasks of training, learnability, conver-
gence, and generalization. Quite often, however, an impor-
tant aspect is overlooked: a neural networks is in essence
a numerical method to approximate a function; its training
method is usually an algorithm to solve an unconstrained
quadratic optimization problem (minimization of the error
E =

∑
i(oi − ti)

2 where oi is the actual NN output and ti
the expected training result). Therefore, a process for V&V
of neural networks also needs to investigate the numerical
issues underlying the NN and its implementation. Within
this project, [18] discusses a list of important issues which
need to be taken into account when V&V is attempted. Al-
though the issues discussed in the following are tailored to-
ward PTNN, principally the same issues occur when the
neural network is trained online.

There are three distinct classes of problems (although
problems in one class can also cause problems in another
class): (i) general numeric properties, like scaling, condi-
tioning, or sensitivity analysis, (ii) properties/issues specif-
ically related to the training algorithm (e.g., convergence,
termination), and, finally, (iii) issues with respect to the ac-
tual implementation on a digital computer (e.g., round-off
errors, accuracy of library functions). In the following, we
will discuss some of these properties and will give practical
examples.

5.1 Scaling and Condition Number
It is obvious that the data ranges of inputs (and also of the

outputs) of the neural network should be of the same order
of magnitude in order to obtain best-possible accuracy. The
reason for this is that the inputs are usually combined as a
weighted sum to produce the activation levels of the artificial
neurons on the second layer. Thus, extremely large input
values would either dominate the sum or would require very
small weights, leading to low accuracy. A typical example
for unfavorable ranges of data is when one input of the NN
represents the current altitude in feet (range: 0. . . 50,000ft)
and the other a small angle, e.g., α ∈ {0, . . . , 0.09rad}. In
these cases, scaling of the inputs is important. This is usu-
ally accomplished by multiplying each input with a constant
factor. Not so obvious, however, is the fact that scaling can
affect the behavior of some training algorithms. For exam-
ple, the well-known gradient descent algorithm is influenced
by scaling, whereas a Newton method is not (for a detailed
discussion see [3, 1, 6]).

In order to assess the NN’s behavior with respect to changes
in the input values or the weights, sensitivity analysis can be
performed. For a sensitivity analysis of the neural network
during training, it is often helpful to consider, how small
changes in the weights affect the error function (and thus
how fast and good the network can be trained). We start
from the the quadratic form of the error function E. Let Φ
be a quadratic representation (or approximation) of the er-
ror function E in the neighborhood of the (local) minimum
x0. Φ is defined as

Φ(x) = gTx +
1

2
xTGx

where g ∈ Rn is the gradient ∇E|x0 , and G is the Hessian
matrix. When we plot Φ in the vicinity of the minimum, we
obtain surfaces shaped like a bowl or an elongated valley;
the contour lines are ellipses. Fig. 4 shows the contours
for two examples. A training algorithm tries to find the
minimum by moving small straight segments along this error
surface. It is easy to see that such a search algorithm can
find the minimum much easier in a round bowl than in a
long and narrow valley where small deviations can cause
the algorithm to get stuck or “thrown” out of the valley.

A B

Figure 4: Contours of a well conditioned (A) and
bad conditioned problem. The minimum is at the
center of the ellipses, arrows mark the semi-axes of
the ellipses.

More formally, the behavior of Φ (and thus also of E) in
the vicinity of x0 is determined by the eigensystem of G
The ratio of the largest and the smallest eigenvalue of G is
defined as the condition number C. C also determines the

eccentricity of the ellipses in Figure 4: a small condition
number corresponds to an almost circular error surface (A);
a large C results in a steep and long “valley” (B) which
can lead to serious problems. Thus, the condition number
of the problem is an important metric for the behavior of
the NN with respect to training and convergence. Thus,
all tests which are performed during NN V&V should, in
addition to demonstrating convergence, calculate and assess
the condition number.

5.2 Properties of the Training Algorithm
Training of a NN is an iterative numerical optimization al-

gorithm, minimizing the error. Depending on the algorithm
(e.g., gradient descent, Newton, Levenberg-Marqhart) and
the training data, the algorithm must be stopped when op-
timal training of the NN has been reached. More specifi-
cally, the training algorithm needs to be stopped when: (i)
the minimum has been reached (i.e., the problem has been
solved), (ii) we have ground to a halt (i.e., there is no more
progress), and (iii) we have exhausted memory or time re-
sources.

In all cases, a careful analysis of the trained network and
the reason why the training algorithm has stopped is impor-
tant. [3, 6] elaborates on a number of possibilities why the
training algorithm might have located a “wrong” local mini-
mum or why it is oscillating or diverging, ultimately leading
to an incorrect behavior of the NN-based system.

5.3 Hidden Library Problems
When implementing a numerical algorithm, the built-in

library functions (e.g., exp, sin, cos) are mostly used “as
given” without further consideration. In a safety-critical
application, however, it is worthwhile to also analyze and
test these functions carefully.

Many mathematical library functions are implemented us-
ing elaborate iterative numerical algorithms which are often
directly written in assembly code for maximum performance.
In practice, however, such implementations can have serious
flaws and show other unexpected behavior.

Figure 5 shows the difference between a Java implemen-
tation of an exponential function (using Taylor-series ex-
pansions) and a standard UNIX library function. For small
values of x, the accuracy is good, larger values result in
unacceptable errors. This deviation is due to the very in-
accurate calculation of the higher-order Taylor terms xi/i!.
In practice this means that the Java subroutine returns an
acceptable value as long as its argument is always within
a range of −6 < x < 6. For a safety-critical application,
however, V&V has to guarantee that this range-restriction
always holds or the subroutine should not be used.

Usually, the runtime of a numerical library function is
considered to be small and constant. However, in practice,
function evaluation for different parameter values can take
different amounts of time. These effects, as shown in Fig-
ure 6 can be substantially large (here, approximately 14%).
In particular in time-critical applications, these effects can
have disastrous effects, because they can cause the entire
system to miss hard timing deadlines. Since such timing
errors are extremely difficult to detect, every effort needs to
be made during design and V&V to avoid such situations
upfront.

Figure 5: Square error between two different library
implementations of the exponential function exp(x)
(logarithmic y-scale).

Figure 6: Run-time of library function sin(x) over a
wide range of input values (log-scale). Run-time in
seconds for 50,000 evaluations.

6. DISCUSSION AND FUTURE WORK
In this paper, we have reported ongoing work on the de-

velopment of a V&V process and specific techniques for
performing V&V of pre-trained neural networks. Although
this process has to deviate in important aspects from one
for standard software, it is expected that V&V of a sys-
tem with a PTNN can be performed with reasonable effort.
This, however, is only a first step. V&V of a system with
on-line adaptation requires a combination of different and
novel techniques to be effective. We are confident that our
layered approach as described in Section 3 is helpful to ad-
dress this topic. More specifically, we are currently working
on the following aspects:

Classical techniques and techniques discussed so far only
address the individual components (neural network and the
controller), but not the entire system. It will be necessary
to perform research on combining the different properties of
the different components to obtain guarantees for the entire
system. For example, stability and convergence properties
of the neural network (e.g., expressed using VC-dimension
arguments) need to be combined with stability proofs for the
controller (e.g., with Lyapunov functions) to demonstrate
stability and robustness of the NN-controller-plant system.
First theoretical results on this have been presented in, e.g.,
[11].

As mentioned in Section 3, these mathematical results are
often of asymptotic nature and cannot provide guarantees
on issues like timing. Here, it is expected that testing and
dynamic monitoring techniques are vital to demonstrate the
adaptive behavior of the system in the nominal and ana-
lyzed failure case. However, the analysis of test results can
be quite different. For example, a NN based system might
adapt differently toward the same failure scenario, based up-
on different history and random initial values. This kind of
non-determinism (e.g., to use different actuators to compen-
sate a failure) is perfectly in alignment with the requirements
and needs to be taken into account during testing.

The ultimate goal to provide guarantees for all unexpect-
ed cases can probably never be reached. So, for example,
there always exists a point where the physical system is
damaged/changed to such an extend that adaptation to-
ward controllable behavior is simply not possible. In such
cases, any attempt at adaptation would be futile. Howev-
er, an adaptive system in a safety-critical application needs
to quickly recognize this fact and should provide a warning
(e.g., to the pilot who then can decide to eject). We are
currently developing a monitoring harness around the neu-
ral network which, using Bayesian techniques, is capable of
producing a measure on how the NN behaves [17].

With a combination of these techniques which are to be
applied during a traditional V&V-phase and also during de-
ployment, more and more guarantees about the NN’s behav-
ior can be given, thus facilitating the application of adaptive
systems in safety-critical domains.

7. REFERENCES
[1] C. M. Bishop. Neural Networks for Pattern

Recognition. Clarendon-Press, Oxford, 1995.

[2] A. Calise and R. Rysdyk. Adaptive model inversion
flight control for tiltrotor aircraft. In AIAA Guidance,
Navigation and Control Conference 1997, number
AIAA-97-3758. AIAA, 1997.

[3] J. E. Dennis and R. B. Schnabel. Numerical Methods
for Unconstrained Optimization and Nonlinear
Equations, volume 16 of Classics in Applied
Mathematics. SIAM, 1996.

[4] DO-178B: Software considerations in airborne systems
and equipment certification. URL:
http://www.rtca.org, 1992.

[5] S. S. Ge, T. Lee, and C. J. Harris. Adaptive Neural
Network Control of Robotic Manipulators, volume 19
of World Scientific Series in Robotics and Intelligent
Systems. World Scientific, 1998.

[6] P. Gill, W. Murray, and M. Wright. Practical
Optimization. Academic Press, 1981.

[7] M. Idan, M. Johnson, and A. Calise. A hierarchical
approach to adaptive control for improved flight
safety. In AIAA Guidance, Navigation and Control
Conference 2001, number AIAA-2001-4209. AIAA,
2001.

[8] IEEE standards 12207.0, 12207.1, 12207.2. URL:
http://ieeexplore.ieee.org, 1997.

[9] C. Jorgensen. Direct adaptive aircraft control using
neural networks. Technical Report TM-47136, NASA,
1997.

[10] J. Kaneshige and K. Gundy-Burlet. Integrated neural
flight and propulsion control system. In AIAA

Guidance, Navigation and Control Conference 2001,
number AIAA-2001-4386. AIAA, 2001.

[11] A. Kelkar. Neural networks for modeling and control
of dynamic systems. Presentation at NASA Ames,
Code IC, 2001.

[12] D. Mackall, S. Nelson, and J. Schumann. Verification
and Validation of Neural Networks of Aerospace
Applications. Technical Report CR-211409, NASA,
2002.

[13] NASA guidebook for safety critical software. Technical
Report NASA-GB-1740.13-96, NASA, 1996.

[14] NASA procedures and guidelines NPG: 2820.draft,
NASA software guidelines and requirements as of
3/19/01. NASA Ames Research Center, Moffett Field,
California, USA, 2001. (Responsible Office: Code
AE/Office of the Chief Engineer).

[15] M. Norgaard, O. Ravn, N. Poulsen, and L. K. Hansen.
Neural Networks for Modeling and Control of
Dynamic Systems. Springer, 2002.

[16] A. Sastry and M. Bodson. Adaptive Control: Stability,
Convergence and Robustness. Prentice Hall, 1994.
http://www.ece.utah.edu/~bodson/acscr.

[17] J. Schumann. Vericonn: Verification of controllers
based on adaptive neural networks — white paper—.
Technical report, NASA Ames, Automated Software
Engineering, 2001.

[18] J. Schumann. V&V issues for neural networks.
Technical Report RIACS-TR-XX-02, RIACS, 2002.

[19] D. Soloway and P. Haley. Reconfigurable flight control
using neural generalized predictive control. In AIAA
Space 2000 Conference, number AIAA-2000-5328.
AIAA, 2000.

[20] J. Totah. Adaptive flight control and on-line learning.
In AIAA Guidance, Navigation and Control
Conference 1997, number AIAA-97-3537. AIAA, 1997.

